Received 29 April 2005 Accepted 27 June 2005

Online 6 July 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

You-Tao Si, Cheng-Bing Ma, Ming-Qiang Hu and Chang-Neng Chen*

State Key Laboratory of Structural Chemistry, FuJian Institute of Research on the Structure of Matter, Fuzhou, FuJian 350002, People's Republic of China

Correspondence e-mail: ccn@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.004 Å R factor = 0.032 wR factor = 0.088 Data-to-parameter ratio = 17.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexacarbonylbis(μ_2 -2-methoxyphenylthiolato)diiron(I)(Fe—Fe)

In the title compound, $[Fe_2(CO)_6(C_7H_7OS)_2]$ or $[Fe_2(SPh-2-OMe)_2(CO)_6]$, each Fe atom is coordinated by three terminal carbonyl C atoms [Fe-C 1.779 (2)-1.819 (2) Å], two bridging S atoms [Fe-S 2.2747 (7)-2.2933 (7) Å] and the other Fe atom [Fe-Fe 2.4979 (5) Å], displaying a highly distorted octahedral geometry with *cis* angles ranging from 74.59 (3) to 105.88 (7)°.

Comment

Hydrogenases are enzymes that catalyse the reversible twoelectron oxidation of H₂ (Marr *et al.*, 2001). It is well established that the Fe-only hydrogenases have an Fe₂S₂ core that is the active site. Crystallography revealed that this active site is cysteine-S bridged to an Fe₄S₄ cluster, the first in a series of Fe–S clusters that form the electron-transport route to biological electron donor/acceptor sites. The two Fe atoms are, in fact, bridged together, by two non-protein thiolates or sulfides, and other coordination sites are occupied by diatomic ligands which have been identified to be CO and CN⁻ (Pierik *et al.*, 1999). The title compound, (I), exhibits some resemblance to the active site of Fe-hydrogenases.

As shown in Fig. 1, compound (I) contains two $Fe(CO)_3$ subunits which are bridged by two thiolate ligands, resulting in an Fe_2S_2 core. This Fe_2S_2 core displays the well known butterfly arrangement, with a dihedral angle of 93.0 (2)° between the two Fe~2~S planes. The average Fe-S distance [2.282 (8) Å] compares well with those found in other similar complexes (Ashby, 1995). The Fe-Fe distance in (I) is shorter than that reported in $[Fe_2(SPh-4-OH)_2(CO)_6]$ [2.522 (1) Å; Ashby, 1995].

An octahedral environment around each metal centre in (I) is completed through the additional coordination of three terminal carbonyl groups. The octahedra are distorted, as indicated by the *trans* angles, which vary from 149.25 (7) to 159.47 (7)°. The average Fe-C distance [1.797 (5) Å] in (I) is longer than that found in $[\text{Fe}_2(\text{SPh-4-OH})_2(\text{CO})_6]$

O 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A drawing of the title compound, with the atomic labelling scheme and 30% probability displacement ellipsoids.

[1.789 (15) Å; Ashby, 1995] and the average Fe-S-Fe angle $[66.357 (16)^{\circ}]$ in (I) is slightly smaller than that observed in [Fe₂(SPh-4-OH)₂(CO)₆] [67.6 (4)°; Ashby, 1995].

Experimental

The synthesis was carried out under an atmosphere of purified nitrogen using standard Schlenk techniques. Fe₃(CO)₁₂ (1.0 g, 1.98 mmol) was dissolved in dry tetrahydrofuran (40 ml) under a nitrogen atmosphere and then 2-methoxythiophenol (0.5 ml, 4 mmol) was added. The mixture was refluxed for 2 h, which resulted in the formation of a dark-red solution. This dark-red solution was allowed to cool to room temperature and the majority of the solvent was evaporated in vacuo. The remaining solution was filtered through silica gel. A dark-red fraction was collected by elution with hexane. Recrystallization of the crude product from distilled hexane in a fridge for 2 d gave the title compound, (I), as dark-red crystals (670 mg, 40% yield).

Crystal data

$[Fe_2(CO)_6(C_7H_7OS)_2]$	Mo $K\alpha$ radiation
$M_r = 558.13$	Cell parameters from 8106
Orthorhombic, Pbca	reflections
a = 14.206 (4) Å	$\theta = 3.0-27.5^{\circ}$
b = 14.015 (4) Å	$\mu = 1.52 \text{ mm}^{-1}$
c = 22.639 (6) Å	T = 298 K
V = 4507 (2) Å ³	Prism, dark red
Z = 8	$0.55 \times 0.50 \times 0.40 \text{ mm}$
$D_x = 1.645 \text{ Mg m}^{-3}$	
Data collection	
Rigaku Mercury CCD area-detector	5148 independent reflections
diffractometer	4915 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.022$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -18 \rightarrow 18$
$T_{\min} = 0.452, T_{\max} = 0.549$	$k = -17 \rightarrow 18$
32701 measured reflections	$l = -17 \rightarrow 29$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.032$	+ 1.8475P]
$wR(F^2) = 0.088$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
5148 reflections	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
289 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

l able 1			
Selected	geometric parameters	(Å,	°).

Fe1-C4	1.784 (2)	Fe2-C1	1.779 (2)
Fe1-C6	1.786 (2)	Fe2-C3	1.798 (2)
Fe1-C5	1.819 (2)	Fe2-C2	1.819 (2)
Fe1-S1	2.2747 (7)	Fe2-S2	2.2808 (7)
Fe1-S2	2.2803 (7)	Fe2-S1	2.2933 (7)
Fe1-Fe2	2.4979 (5)		
C4-Fe1-C6	87.98 (10)	C1-Fe2-C3	90.82 (10)
C4-Fe1-C5	103.49 (11)	C1-Fe2-C2	95.98 (10)
C6-Fe1-C5	98.19 (10)	C3-Fe2-C2	99.31 (10)
C4-Fe1-S1	156.69 (8)	C1-Fe2-S2	93.25 (8)
C6-Fe1-S1	94.66 (7)	C3-Fe2-S2	159.78 (7)
C5-Fe1-S1	99.05 (8)	C2-Fe2-S2	99.95 (7)
C4-Fe1-S2	94.85 (7)	C1-Fe2-S1	156.41 (8)
C6-Fe1-S2	159.47 (7)	C3-Fe2-S1	94.23 (7)
C5-Fe1-S2	100.89 (7)	C2-Fe2-S1	105.88 (7)
S1-Fe1-S2	74.96 (2)	S2-Fe2-S1	74.59 (3)

H atoms were positioned geometrically and allowed to ride on their parent atoms, with CH₃ and aromatic CH bonds set to 0.96 and 0.93 Å, respectively, and with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic CH and $1.5U_{eq}(C)$ for CH₃.

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant Nos. 20471061 and 001CB108906).

References

- Ashby, M. T. (1995). Inorg. Chem. 34, 5429-5436.
- Marr, A. C., Spencer, D. J. E. & Schröder, M. (2001). Coord. Chem. Rev. 219-221, 1055-1074.
- Pierik, A. J., Roseboom, W., Happe, R. P., Bagley, K. A. & Albracht, S. P. J. (1999). J. Biol. Chem. 274, 3331-3337.
- Rigaku (2000). CrystalClear. Version 1.35. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Siemens (1994). SHELXTL. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.